New understanding of hardening mechanism of TiN/SiNx-based nanocomposite films
نویسندگان
چکیده
In order to clarify the controversies of hardening mechanism for TiN/SiNx-based nanocomposite films, the microstructure and hardness for TiN/SiNx and TiAlN/SiNx nanocomposite films with different Si content were studied. With the increase of Si content, the crystallization degree for two series of films firstly increases and then decreases. The microstructural observations suggest that when SiNx interfacial phase reaches to a proper thickness, it can be crystallized between adjacent TiN or TiAlN nanocrystallites, which can coordinate misorientations between nanocrystallites and grow coherently with them, resulting in blocking of the dislocation motions and hardening of the film. The microstructure of TiN/SiNx-based nanocomposite film can be characterized as the nanocomposite structure with TiN-based nanocrystallites surrounded by crystallized SiNx interfacial phase, which can be denoted by nc-TiN/c-SiNx model ('c' before SiNx means crystallized) and well explain the coexistence between nanocomposite structure and columnar growth structure within the TiN/SiNx-based film.
منابع مشابه
Nanocomposite Thin Films for both Mechanical and Functional Applications
The design methodology and realization of nanocomposite films aiming for mechanical (superhardness, toughness) and functional (optical, microelectronic) properties were discussed in this paper. Superhard TiCrCN and nc-TiN/a-SiNx films and super-tough nc-TiC/a-C(Al) films were prepared through co-sputtering method by optimal design of microstructure. The nanocrystalline silicon (nc-Si) passivate...
متن کاملEffect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies
Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of t...
متن کاملFabrication of Sno2/Reduced Graphene Oxide Nanocomposite Films for Sensing No2 Gas at Room-Temperature
One-pot polyol process was combined with metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on tin dioxide and reduced graphene oxide (SO2/RGO) nanocomposite films. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of the fabricated films. The electrical and NO2 gas-sensing properties of...
متن کاملMultilayered Cr(Al)N/SiOx Nanocomposite Coatings Fabricated by Differential Pumping Cosputtering
Nanocomposite films of metal nitrides such as TiN/Si3N4, TiN/BN, and CrN/AlN have attracted substantial attention as coating materials for improving hardness and saving rare metals. It is difficult to prepare composite films consisting of nitride and oxide by conventional reactive sputtering methods. Nose et al. developed a differential pumping cosputtering (DPCS) system, which can fabricate di...
متن کاملPolyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films†
We report the preparation of solution-derived metal oxide nanocomposite films by combining polyoxometalates (POMs) and colloidal oxide nanocrystals. Polyniobates and vanadates were combined with Sn-doped In2O3 (ITO) nanocrystals leading to Nb2O5–ITO, V2O5–ITO and VO2–ITO nanocomposite films. Compared to other solution-phase methodologies, this approach offers excellent control of the nanoinclus...
متن کامل